Package: ppRank 0.1.1

ppRank: Classification of Algorithms

Implements the Bi-objective Lexicographical Classification method and Performance Assessment Ratio at 10% metric for algorithm classification. Constructs matrices representing algorithm performance under multiple criteria, facilitating decision-making in algorithm selection and evaluation. Analyzes and compares algorithm performance based on various metrics to identify the most suitable algorithms for specific tasks. This package includes methods for algorithm classification and evaluation, with examples provided in the documentation. Carvalho (2019) presents a statistical evaluation of algorithmic computational experimentation with infeasible solutions <doi:10.48550/arXiv.1902.00101>. Moreira and Carvalho (2023) analyze power in preprocessing methodologies for datasets with missing values <doi:10.1080/03610918.2023.2234683>.

Authors:Tiago Costa Soares [aut], Iago Augusto de Carvalho [aut, cre]

ppRank_0.1.1.tar.gz
ppRank_0.1.1.zip(r-4.5)ppRank_0.1.1.zip(r-4.4)ppRank_0.1.1.zip(r-4.3)
ppRank_0.1.1.tgz(r-4.4-any)ppRank_0.1.1.tgz(r-4.3-any)
ppRank_0.1.1.tar.gz(r-4.5-noble)ppRank_0.1.1.tar.gz(r-4.4-noble)
ppRank_0.1.1.tgz(r-4.4-emscripten)ppRank_0.1.1.tgz(r-4.3-emscripten)
ppRank.pdf |ppRank.html
ppRank/json (API)

# Install 'ppRank' in R:
install.packages('ppRank', repos = c('https://iagoac.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 304 downloads 2 exports 0 dependencies

Last updated 2 months agofrom:4ee213dc42. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winOKNov 01 2024
R-4.5-linuxOKNov 01 2024
R-4.4-winOKNov 01 2024
R-4.4-macOKNov 01 2024
R-4.3-winOKNov 01 2024
R-4.3-macOKNov 01 2024

Exports:bilexpar10

Dependencies: